Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(3): e0284023, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349152

RESUMEN

The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.


Asunto(s)
Ascomicetos , Elementos Transponibles de ADN , Humanos , Ascomicetos/genética , Polimorfismo Genético , Mapeo Cromosómico , Evolución Molecular
2.
Mob DNA ; 15(1): 2, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245743

RESUMEN

How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.

3.
PLoS Pathog ; 19(2): e1011130, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787337

RESUMEN

The activity of transposable elements (TEs) contributes significantly to pathogen genome evolution. TEs often destabilize genome integrity but may also confer adaptive variation in pathogenicity or resistance traits. De-repression of epigenetically silenced TEs often initiates bursts of transposition activity that may be counteracted by purifying selection and genome defenses. However, how these forces interact to determine the expansion routes of TEs within a pathogen species remains largely unknown. Here, we analyzed a set of 19 telomere-to-telomere genomes of the fungal wheat pathogen Zymoseptoria tritici. Phylogenetic reconstruction and ancestral state estimates of individual TE families revealed that TEs have undergone distinct activation and repression periods resulting in highly uneven copy numbers between genomes of the same species. Most TEs are clustered in gene poor niches, indicating strong purifying selection against insertions near coding sequences, or as a consequence of insertion site preferences. TE families with high copy numbers have low sequence divergence and strong signatures of defense mechanisms (i.e., RIP). In contrast, small non-autonomous TEs (i.e., MITEs) are less impacted by defense mechanisms and are often located in close proximity to genes. Individual TE families have experienced multiple distinct burst events that generated many nearly identical copies. We found that a Copia element burst was initiated from recent copies inserted substantially closer to genes compared to older copies. Overall, TE bursts tended to initiate from copies in GC-rich niches that escaped inactivation by genomic defenses. Our work shows how specific genomic environments features provide triggers for TE proliferation in pathogen genomes.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Humanos , Elementos Transponibles de ADN/genética , Filogenia , Secuencia de Bases , Genómica
4.
Mol Ecol ; 32(10): 2443-2460, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35313056

RESUMEN

Microbial pathogens can adapt rapidly to changing environments such as the application of pesticides or host resistance. Copy number variations (CNVs) are a major source of adaptive genetic variation for recent adaptation. Here, we analyse how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to the host environment and fungicide applications. We screen the genomes of 125 isolates sampled across a worldwide set of populations and identify a total of 7,879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. Although CNVs are generally under negative selection, we find that genes affected by CNVs are enriched in functions related to host exploitation (i.e., effectors and cell-wall-degrading enzymes). We perform genome-wide association studies (GWAS) and identify a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance and a duplication encompassing an effector gene affecting virulence. We show that the adaptive CNVs were probably created by recently active transposable element families. Moreover, we find that specific transposable element families are important drivers of recent gene CNV. Finally, we use a genome-wide single nucleotide polymorphism data set to replicate the GWAS and contrast it with the CNV-focused analysis. Together, our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN , Genética de Población , Adaptación Fisiológica
5.
Genet Mol Biol ; 45(1): e50510051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037932

RESUMEN

Pseudocercospora ulei is the causal agent of South American Leaf Blight (SALB), the main disease affecting Hevea brasiliensis rubber tree, a native species to the Amazon. Rubber tree is a major crop in South American countries and SALB disease control strategies would benefit from the availability of genomic resources for the fungal pathogen. Here, we assembled and annotated the P. ulei genome. Shotgun sequencing was performed using second and third generation sequencing technologies. We present the first P. ulei high-quality genome assembly, the largest among Mycosphaerellaceae, with 93.8 Mbp, comprising 215 scaffolds, an N50 of 2.8 Mbp and a BUSCO gene completeness of 97.5%. We identified 12,745 protein-coding gene models in the P. ulei genome with 756 genes encoding secreted proteins and 113 genes encoding effector candidates. Most of the genome (80%) is composed of repetitive elements dominated by retrotransposons of the Gypsy superfamily. P. ulei has the largest genome size among Mycosphaerellaceae, with the highest TE content. In conclusion, we have established essential genomic resources for a wide range of studies on P. ulei and related species.

6.
Trends Genet ; 38(3): 222-230, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34489138

RESUMEN

Transposable elements (TEs) spread in genomes through self-copying mechanisms and are a major cause of genome expansions. Plant pathogens have finely tuned the expression of virulence factors to rely on epigenetic control targeted at nearby TEs. Stress experienced during the plant infection process leads to derepression of TEs and concurrently allows the expression of virulence factors. We argue that the derepression of TEs elements causes an evolutionary conflict by favoring TEs that can be reactivated. Active TEs and recent genome size expansions indicate that plant pathogens could face long-term consequences from the short-term benefit of fine-tuning the infection process. Hence, encoding key virulence factors close to TEs under epigenetic control constitutes a devil's bargain for pathogens.


Asunto(s)
Elementos Transponibles de ADN , Plantas , Evolución Biológica , Elementos Transponibles de ADN/genética , Evolución Molecular , Genoma de Planta/genética , Plantas/genética
7.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528512

RESUMEN

Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen's center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.


Asunto(s)
Ascomicetos/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Genoma Fúngico/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Triticum/microbiología
8.
Microb Genom ; 7(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424154

RESUMEN

The activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.


Asunto(s)
Elementos Transponibles de ADN , Metagenómica , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Evolución Molecular , Variación Genética , Genoma , Genoma Fúngico , Genómica , Enfermedades de las Plantas/microbiología , Retroelementos
9.
BMC Biol ; 18(1): 12, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046716

RESUMEN

BACKGROUND: The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. RESULTS: Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. CONCLUSIONS: Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.


Asunto(s)
Ascomicetos/genética , Elementos Transponibles de ADN , Genoma Fúngico , Transcriptoma , Enfermedades de las Plantas/microbiología , Triticum/microbiología
10.
Mol Biol Evol ; 37(1): 221-239, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553475

RESUMEN

Transposable elements (TEs) are drivers of genome evolution and affect the expression landscape of the host genome. Stress is a major factor inducing TE activity; however, the regulatory mechanisms underlying de-repression are poorly understood. Plant pathogens are excellent models to dissect the impact of stress on TEs. The process of plant infection induces stress for the pathogen, and virulence factors (i.e., effectors) located in TE-rich regions become expressed. To dissect TE de-repression dynamics and contributions to virulence, we analyzed the TE expression landscape of four strains of the major wheat pathogen Zymoseptoria tritici. We experimentally exposed strains to nutrient starvation and host infection stress. Contrary to expectations, we show that the two distinct conditions induce the expression of different sets of TEs. In particular, the most highly expressed TEs, including miniature inverted-repeat transposable element and long terminal repeat-Gypsy element, show highly distinct de-repression across stress conditions. Both the genomic context of TEs and the genetic background stress (i.e., different strains harboring the same TEs) were major predictors of de-repression under stress. Gene expression profiles under stress varied significantly depending on the proximity to the closest TEs and genomic defenses against TEs were largely ineffective to prevent de-repression. Next, we analyzed the locus encoding the Avr3D1 effector. We show that the insertion and subsequent silencing of TEs in close proximity likely contributed to reduced expression and virulence on a specific wheat cultivar. The complexity of TE responsiveness to stress across genetic backgrounds and genomic locations demonstrates substantial intraspecific genetic variation to control TEs with consequences for virulence.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Evolución Biológica , Elementos Transponibles de ADN , Estrés Fisiológico , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Fúngico , Triticum/microbiología , Virulencia/genética
11.
Genome Biol Evol ; 11(11): 3106-3122, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31609418

RESUMEN

Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F. austroamericanum, F. cortaderiae, and F. meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.


Asunto(s)
Fusariosis/microbiología , Fusarium/genética , Genoma Fúngico , Familia de Multigenes , Metabolismo Secundario/genética , Elementos Transponibles de ADN , Evolución Molecular , Hongos/genética , Transferencia de Gen Horizontal , Enfermedades de las Plantas/microbiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...